Problem 11

If $0<a<b$, find

$$
\lim _{t \rightarrow 0}\left\{\int_{0}^{1}[b x+a(1-x)]^{t} d x\right\}^{1 / t}
$$

Solution

We will solve the integral first and then evaluate the limit. In the integrand there's a function (enclosed in the square brackets) inside of another function (power function). We can solve this with a u-substitution, letting u be equal to the inner function.

$$
\begin{aligned}
u & =b x+a(1-x) \\
d u & =(b-a) d x \quad \rightarrow \quad \frac{d u}{b-a}=d x
\end{aligned}
$$

Making this substitution changes not only the integrand but also the limits. The old limits are $x=0$ and $x=1$. Plug these values into the u-substitution to obtain the new limits. Doing so gives $u=a$ and $u=b$, respectively.

$$
\lim _{t \rightarrow 0}\left\{\int_{a}^{b} u^{t} \frac{d u}{b-a}\right\}^{1 / t}
$$

$1 /(b-a)$ is a constant, so it can be pulled out in front of the integral.

$$
\lim _{t \rightarrow 0}\left\{\frac{1}{b-a} \int_{a}^{b} u^{t} d u\right\}^{1 / t}
$$

Evaluate the integral. Because it's a power function, bump up the power by 1 and divide by that same number.

$$
\lim _{t \rightarrow 0}\left\{\left.\frac{1}{b-a} \cdot \frac{u^{t+1}}{t+1}\right|_{a} ^{b}\right\}^{1 / t}
$$

Plug in the limits of integration.

$$
\lim _{t \rightarrow 0}\left\{\frac{1}{b-a} \cdot \frac{1}{t+1}\left(b^{t+1}-a^{t+1}\right)\right\}^{1 / t}
$$

The integral is gone, and all that's left is to determine the limit. Since there's a $1 / t$ in the exponent, we'll need to use the logarithm to bring it down. Make use of the following trick.

$$
\lim _{t \rightarrow 0} e^{\ln \left\{\frac{1}{b-a} \cdot \frac{1}{t+1}\left(b^{t+1}-a^{t+1}\right)\right\}^{1 / t}}
$$

Now that there's a logarithm in front, the exponent can become the coefficient.

$$
\lim _{t \rightarrow 0} e^{\frac{1}{t}} \ln \left\{\frac{1}{b-a} \cdot \frac{1}{t+1}\left(b^{t+1}-a^{t+1}\right)\right\}
$$

Bring the limit into the exponent.

$$
\lim _{e^{t \rightarrow 0}} \frac{1}{t} \ln \left\{\frac{1}{b-a} \cdot \frac{1}{t+1}\left(b^{t+1}-a^{t+1}\right)\right\}
$$

Plugging in $t=0$ gives $\ln 1$ (which is 0) over 0 . This is an indeterminate form, so l'Hôpital's rule can be applied here. The derivative of t is just 1 , so the denominator disappears. We essentially replace the entire expression with the derivative of the ln term. We have to use the chain rule here because there's a whole function of t inside the logarithm; that is, the function's derivative has to be multiplied as well.

$$
\lim _{e^{t \rightarrow 0}}\left\{\frac{b-a}{b^{t+1}-a^{t+1}} \cdot \frac{t+1}{1} \cdot \frac{d}{d t}\left[\frac{1}{b-a} \cdot \frac{1}{t+1}\left(b^{t+1}-a^{t+1}\right)\right]\right\}
$$

$1 /(b-a)$ comes out of the derivative and cancels with the $b-a$. Use the quotient rule to evaluate the derivative. Note that $d / d t\left(t^{a+1}\right)=(a+1) t^{a}$, but $d / d t\left(a^{t+1}\right)=a^{t+1} \ln a$.

$$
e^{\lim _{t \rightarrow 0}}\left\{\frac{t+1}{b^{t+1}-a^{t+1}} \cdot \frac{\left(b^{t+1} \ln b-a^{t+1} \ln a\right)(t+1)-1 \cdot\left(b^{t+1}-a^{t+1}\right)}{(t+1)^{2}}\right\}
$$

Simplify the resulting expression.

$$
e^{\lim _{t \rightarrow 0}}\left\{\frac{1}{b^{t+1}-a^{t+1}} \cdot \frac{\left(b^{t+1} \ln b-a^{t+1} \ln a\right)(t+1)-b^{t+1}+a^{t+1}}{t+1}\right\}
$$

Now we can plug in $t=0$ to evaluate the limit. Doing so gives

$$
e^{\left[\frac{1}{b-a} \cdot \frac{(b \ln b-a \ln a)-b+a}{1}\right]} .
$$

Distribute the $1 /(b-a)$.

$$
e^{\left[\frac{1}{b-a}(b \ln b-a \ln a)-1\right]}
$$

Combine the logarithms into one.

$$
e^{\left[\frac{1}{b-a} \ln \frac{b^{b}}{a^{a}}-1\right]}
$$

Bring up the coefficient to the exponent.

$$
e^{\left[\ln \left(\frac{b^{b}}{a^{a}}\right)^{1 /(b-a)}-1\right]}
$$

Split up the exponential into two.

$$
e^{\ln \left(\frac{b^{b}}{a^{a}}\right)^{1 /(b-a)}} e^{-1}
$$

Therefore,

$$
\lim _{t \rightarrow 0}\left\{\int_{0}^{1}[b x+a(1-x)]^{t} d x\right\}^{1 / t}=\frac{1}{e}\left(\frac{b^{b}}{a^{a}}\right)^{1 /(b-a)} .
$$

